Skip to main content

Gregory Dudley, Ph.D.

Eberly Family Distinguished Professor and Department Chair

Dudley Group website 

About

Ph.D., Massachusetts Institute of Technology, 2000; NIH Postdoctoral Fellow, Memorial Sloan-Kettering Cancer Center, 2000-2002 

Research mission: conscientiously create and disseminate knowledge in the science of synthetic organic chemistry

Our fundamental research goal is to devise, develop, and apply new ideas in organic chemistry to the efficient synthesis of interesting molecules, particularly natural products with medicinal applications. Natural products research impacts the development of many important drugs; relevant examples include aspirin, penicillin, cortisone, and paclitaxel. Complex natural products arise from millions of years of evolutionary screening, and often target specific interactions in intricate biological systems. In these and many other cases, organic synthesis plays a key role in helping us capitalize on desired biological activities. We can continue to benefit from this natural selection process by developing practical syntheses of natural products and analogs. 

Research interests include organic synthesis; new strategies, tactics, and best practices for organic chemistry; and applications of synthesis to medicinal and pharmaceutical research.

Teaching Fields

Organic Chemistry

Representative recent publications

1.     Dudley, G. B.; Stiegman, A. E. Changing perspectives on the strategic use of microwave heating in organic synthesis. Chem. Rec. 2018, 3, 381–389. http://onlinelibrary.wiley.com/doi/10.1002/tcr.201700044/abstract

2.     Kramer, N. J.; Hoang, T. T.; Dudley, G. B. Reaction discovery using neopentylene-tethered coupling partners: cycloisomerization/oxidation of electron-deficient dienynes. Org. Lett. 2017, 19, 4636–4639. http://pubs.acs.org/doi/abs/10.1021/acs.orglett.7b02261

3.     Morrison, A. E.; Hoang, T. T.; Birepinte, M.; Dudley, G. B. Synthesis of illudinine from dimedone. Org. Lett. 2017, 19, 858–861. http://pubs.acs.org/doi/abs/10.1021/acs.orglett.6b03887

4.     Wu, Y.; Gagnier, J.; Dudley, G. B.; Stiegman, A. E. The “chaperone” effect in microwave-driven reactions. Chem. Commun. 2016, 52, 11281–11283. http://pubs.rsc.org/en/content/articlelanding/2016/cc/c6cc06032c#!divAbstract

5.     Wright, A. K.; Batsomboon, P.; Dai, J.; Hung, I.; Zhou, H.-X.; Dudley, G. B.; Cross, T. A. Differential binding of rimantadine enantiomers to influenza A M2 proton channel. J. Am. Chem. Soc. 2016, 138, 1506–1509. http://pubs.acs.org/doi/abs/10.1021/jacs.5b13129

6.     Dudley, G. B.; Richert, R.; Stiegman, A. E. On the Existence of and Mechanism for Microwave-Specific Reaction Rate Enhancement. Chem. Sci. 2015, 6, 2144–2152. http://pubs.rsc.org/en/content/articlelanding/2015/sc/C4SC03372H 

7.     Rizkallah, R.; Batsomboon, P.; Dudley, G. B.; Hurt, M. The Oncogenic Kinase TOPK/PBK is a Master Mitotic Regulator of C2H2 Zinc Finger Proteins. Oncotarget 2015, 6, 1446–1461. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359306/