Skip to main content

Gregory Dudley, Ph.D.

Eberly Family Distinguished Professor – Department Chair

Dudley Group website 

About

Ph.D., Massachusetts Institute of Technology, 2000; NIH Postdoctoral Fellow, Memorial Sloan-Kettering Cancer Center, 2000-2002 

Research mission: conscientiously create and disseminate knowledge in the science of synthetic organic chemistry

Our fundamental research goal is to devise, develop, and apply new ideas in organic chemistry to the efficient synthesis of interesting molecules, particularly natural products with medicinal applications. Natural products research impacts the development of many important drugs; relevant examples include aspirin, penicillin, cortisone, and paclitaxel. Complex natural products arise from millions of years of evolutionary screening, and often target specific interactions in intricate biological systems. In these and many other cases, organic synthesis plays a key role in helping us capitalize on desired biological activities. We can continue to benefit from this natural selection process by developing practical syntheses of natural products and analogs.  

Research interests include organic synthesis; new strategies, tactics, and best practices for organic chemistry; and applications of synthesis to medicinal and pharmaceutical research.


Teaching Fields

Organic Chemistry

Representative recent publications

1. Dudley, G. B.; Stiegman, A. E. Changing perspectives on the strategic use of microwave heating in organic synthesis. Chem. Rec. 2018, 3, 381–389. http://onlinelibrary.wiley.com/doi/10.1002/tcr.201700044/abstract

2. Yang, J.; Hoang, T. T.; Dudley, G. B. Alkynogenic fragmentation.  Org. Chem. Front.  20196, 2560–2569.  https://pubs.rsc.org/en/content/articlelanding/2019/qo/c9qo00266a/  

3. McCullough, B. S.; Batsomboon, P.; Hutchinson, K. B.; Dudley, G. B.; Barrios, A. M. Synthesis and PTP inhibitory activity of illudalic acid and its methyl ether, with insights into selectivity for LAR PTP over other tyrosine phosphatases under physiologically relevant conditions.  J. Nat. Prod.  201982, 3386–3393.  https://pubs.acs.org/doi/full/10.1021/acs.jnatprod.9b00663 

4. Frasso, M. A.; Stiegman, A. E.; Dudley, G. B. Microwave-specific acceleration of a retro-Diels-Alder reaction.  Chem. Commun.  202056, 11247–11250.  https://pubs.rsc.org/en/content/articlelanding/2020/CC/D0CC04584E    
(Featured in  Chemistry Worldhttps://www.chemistryworld.com/news/retro-diels-alder-study-links-solvent-viscosity-to-reaction-rate-under-microwave-heating/4012425.article)

5. Gaston, R., Jr.; Geldenhuys, W. J.; Dudley, G. B. Synthesis of illudinine from dimedone and identification of activity as a monoamine oxidase inhibitor.  J. Org. Chem.  202085, 13429–13437. ( J. Org. Chem. Featured Article)
  https://pubs.acs.org/doi/10.1021/acs.joc.0c01301 

6. Tavakoli, A.; Dudley, G. B. Synthesis of 4,4-dimethyl-1,6-heptadiyne and alcyopterosin O.  Org. Lett.  202022, 8947–8951.  https://pubs.acs.org/doi/full/10.1021/acs.orglett.0c03356