Ring-Opening Reactions of R and QOOH Radicals in Cyclic Hydrocarbons: Cyclohexene and Tetrahydropyran

Prof. Brandon Rotavera
University of Georgia
College of Engineering
Department of Chemistry

Reaction mechanisms in low-temperature oxidation of hydrocarbons and biofuels remain of central importance to the development of numerical chemical kinetics models, which serve as input to simulation tools in the design of next-generation combustion systems. The degree to which such models are useful hinges on insight obtained from rigorous experimental measurements. Of particular utility are speciation data in the region where R• + O₂ reactions dominate (< 1000 K) and, in specific, the identification of isomers formed via reactions of R• and •QOOH radicals and/or species connected to subsequent ketohydroperoxide formation pathways.

Molecular structure plays a central role in reactions mechanisms unfolding below 1000 K. Accordingly, the seminar presents results from a concerted set of studies on cyclohexane, cyclohexene, and tetrahydropyran – six-membered cyclic molecules with different bonding motifs. The results were obtained using multiplexed photoionization mass spectrometry (MPIMS) applied to molecular beams and confirm that ring-opening reactions are facilitated in both cyclohexene and tetrahydropyran, which ultimately impacts the degree of chain-branching expected during combustion.

Date: Fri, March 9, 2018
Time: 12:30-1:30 pm
Location: 208 Clark Hall

Students, pizza will be provided during this special lunch time seminar!